Машинное обучение для начинающих: создание нейронных сетей

abc
000
011
101
110

Соответственно, нейронная сеть берет на вход два числа и должна на выходе дать другое число — ответ. Теперь о самих нейронных сетях.

Что такое нейронная сеть?

Нейронная сеть — это последовательность нейронов, соединенных между собой синапсами. Структура нейронной сети пришла в мир программирования прямиком из биологии. Благодаря такой структуре, машина обретает способность анализировать и даже запоминать различную информацию. Нейронные сети также способны не только анализировать входящую информацию, но и воспроизводить ее из своей памяти. Заинтересовавшимся обязательно к просмотру 2 видео из TED Talks: Видео 1, Видео 2). Другими словами, нейросеть это машинная интерпретация мозга человека, в котором находятся миллионы нейронов передающих информацию в виде электрических импульсов.

Глубокие нейросети: руководство для начинающих

Введение

ИИ уже успел достаточно нашуметь — о нейросетях сейчас знают и в научной среде, и в бизнесе. Вам наверняка случалось читать, что совсем скоро ваши рабочие процессы уже не будут прежними из-за какой-нибудь формы ИИ или нейросети. И вы, я уверен, слышали (пусть и не всё) о глубоких нейронных сетях и глубоком обучении.

В этой статье я приведу самые короткие, но эффективные способы понять, что такое глубокие нейронные сети, а также расскажу о том, как внедрить их с помощью библиотеки PyTorch.

Определение глубоких нейросетей (глубокого обучения) для новичков

Попытка 1

Глубокое обучение — это подраздел машинного обучения в искусственном интеллекте (ИИ), алгоритмы которого основаны на биологической структуре и функционировании мозга и призваны наделить машины интеллектом.

Сложно звучит? Давайте разобьём это определение на отдельные слова и составим более простое объяснение. Начнём с искусственного интеллекта, или ИИ.

Artificial Intelligence — Искусственный интеллект Machine Learning — Машинное обучение Deep Learning — Глубокое обучение

Искусственный интеллект (ИИ) в наиболее широком смысле — это разум, встроенный в машину. Обычно машины глупые, поэтому, чтобы сделать их умнее, мы внедряем в них интеллект — в результате машина может самостоятельно принимать решения. К примеру, стиральная машина определяет необходимый объём воды, а также требуемое время для замачивания, стирки и отжима. Таким образом, она принимает решение, основываясь на конкретных вводных условиях, а значит делает свою работу разумнее. Или, например, банкомат, который выдаёт нужную вам сумму, составляя правильную комбинацию из имеющихся в нём банкнот. Такой интеллект внедряется в машины искусственным путём — отсюда и название “искусственный интеллект”.

Важно отметить, что интеллект здесь запрограммирован явно, то есть создан на основе подробного списка правил вида “если…, то…”. Инженер-проектировщик тщательно продумал все возможные комбинации и создал систему, которая принимает решения, проходясь по цепочке правил. А что если нам нужно внедрить интеллект в машину без явного программирования, то есть, чтобы машина училась сама? Здесь-то мы и подходим к теме машинного обучения.

Машинное обучение — это процесс внедрения интеллекта в систему или машину без явного программирования.

— Эндрю Ын, адъюнкт-профессор Стэнфордского университета

Примером машинного обучения могла бы стать система, предсказывающая результат экзамена на основе предыдущих результатов и характеристик студента. В этом случае решение о том, сдаст студент экзамен или нет, основывалось бы не на подробном списке всех возможных правил — напротив, система обучалась бы сама, отслеживая паттерны в предыдущих наборах данных.

Так где же в этом контексте место глубокого обучения? Машинное обучение успешно решает многие вопросы, но порой не может справиться с задачами, которые кажутся людям очень простыми. К примеру, оно не может отличить кошку от собаки на картинке или мужской голос от женского на аудиозаписи и т. п. Результаты применения машинного обучения чаще всего плохие при обработке изображений, аудио и других типов неструктурированных данных. При поиске причин таких результатов пришло озарение — идея скопировать биологические процессы человеческого мозга, который состоит из миллиардов нейронов, связанных и скоординированных между собой особым образом для изучения нового. Изучение нейронных сетей шло одновременно с этим уже несколько лет, но прогресс был небольшим из-за ограничений в данных и вычислительных мощностях того времени. Когда машинное обучение и нейросети были достаточно изучены, появилось глубокое обучение, которое предполагало создание глубоких нейронных сетей, то есть произвольных нейросетей с гораздо большим количеством слоёв.

Теперь давайте вновь взглянем на определение глубокого обучения.

Попытка 2

Глубокое обучение — это раздел машинного обучения и искусственного интеллекта с алгоритмами, основанными на деятельности человеческого мозга и призванными внедрить интеллект в машину без явного программирования.

Стало гораздо понятнее, правда?

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями: